When you click on links to various merchants on this site and make a purchase, this can result in this site earning a commission. Affiliate programs and affiliations include, but are not limited to, the eBay Partner Network.
Whsmith.co.uk

Taylor & Francis Inc Machine Learning : An Algorithmic Perspective, Second Edition

Whsmith.co.uk

Taylor & Francis Inc Machine Learning : An Algorithmic Perspective, Second Edition

A Proven, Hands-On Approach for Students without a Strong Statistical FoundationSince the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms.Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning.It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation. New to the Second EditionTwo new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of contentRevision of the support vector machine material, including a simple implementation for experimentsNew material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptronAdditional discussions of the Kalman and particle filtersImproved code, including better use of naming conventions in PythonSuitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code.Each chapter includes detailed examples along with further reading and problems.All of the code used to create the examples is available on the author’s website.

from £72.67
Seller: Whsmith.co.uk

Latest products

By Continuing to use this site you confirm, your consent to us and our partners collecting data from you, using cookies to serve personalised ads, tailoring content to you and optimising the site itself. You can learn more about the collection and use of your data and to change your preferences at any time by seeing our Privacy Policy and Cookie Policy.
Accept